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W& Latent Variable Grammars
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W Learning Latent Annotations

Backward

—

EM algorithm:

» Brackets are known
» Base categories are known
* Only induce subcategories
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| i /4\ |7 ‘
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| | —
He was right

Just like Forward-Backward for HMMs.

Forward



}f@ Number of Phrasal Subcategories
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Efi Number of Lexical Subcategories
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¥

Learned Splits

= Proper Nouns (NNP):

NNP-14 Oct. Nov. Sept.

NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco  Street

= Personal pronouns (PRP):

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him




¥

Learned Splits

= Relative adverbs (RBR):

RBR-0
RBR-1
RBR-2

further lower higher
more less More
earlier Earlier later

= Cardinal Numbers (CD):

CD-7
CD-4
CD-11
CD-0
CD-3
CD-9

one two Three
1989 1990 1988
million billion trillion
1 50 100
1 30 31
/8 58 34




Efg Final Results (Accuracy)

< 40 words all
F1 F1
m | Charniak&Johnson ‘05 (generative) 90.1 89.6
Z
@ Split / Merge 90.6 90.1
?n) Dubey ‘05 76.3 -
A Split / Merge 80.8 80.1
o Chiang et al. ‘02 80.0 /6.6
T
< Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods



Efficient Parsing for
Hierarchical Grammars



E& Coarse-to-Fine Inference

= Example: PP attachment

S
/\
NP VP
PRP
???7°?°°7?°7?7?
They
\Y% NP PP
RN N
raised DT NN IN NP
I VAN

a  point of order



p 3 Hierarchical Pruning

coarse: MNP wP | ..

splitineight: .. | ... [ ... .. ||| ||| ]




E{i Bracket Posteriors
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1621 min
111 min
35 min

15 min

(no search error)



Other Syntactic Models



Dependency Parsing

= Lexicalized parsers can be seen as producing dependency trees

S(questioned)
questioned
/ \
NP(lawyer) VP(questioned) lawyer witness
DT(the) NN(lawyer) ] _ . l l
| | Vt(questioned) NP(witness) the the
the lawyer |

questioned DT(the) NN(witness)
| |

the witness

= Each local binary tree corresponds to an attachment in the dependency
graph



g Dependency Parsing

= Pure dependency parsing is only cubic [Eisner 99]

Y[h] Z[n

/
1
U
1
/7
7
Vi

i h Kk h j

= Some work on non-projective dependencies

= Common in, e.g. Czech parsing
= Can do with MST algorithms [McDonald and Pereira 05]

AN N AN

root  John saw a dog yesterday which was a  Yorkshire  Terrier



¥

Shift-Reduce Parsers

Another way to derive a tree:

Remaining Text

Parsing

= No useful dynamic programming search
= Can still use beam search [Ratnaparkhi 97]



E& Parse Reranking

= Assume the number of parses is very small

= We can represent each parse T as a feature vector ¢(T)
= Typically, all local rules are features
= Also non-local features, like how right-branching the overall tree is
[Charniak and Johnson 05] gives a rich set of features

VP




Classification



p 3 Classification

= Automatically make a decision about inputs
= Example: document — category
= Example: image of digit — digit
= Example: image of object — object type
= Example: query + webpages — best match
= Example: symptoms — diagnosis

" Three main ideas
" Representation as feature vectors
= Scoring by linear functions (or not, actually)
= Learning by optimization



p 3 Some Definitions

INPUTS Xi close the
CANDIDATE |
SET y (X) {door, table, ...}
CANDIDATES Yy table
TRUE y* q

y oor
OUTPUTS [/

FEATURE f(x,y) [00100010000Q]

VECTORS 1
/ “close” in x A y="door”

X_lzllthe,, /\ y=lldoorll

x_,="the” A y="table” y occurs in x
_1_ -



Features



Feature Vectors

= Example: web page ranking (not actually classification)

x; = “Apple Computers”

£ (

Apple

From Wikipedia, the free encyclopedia

This article is about the fruit. For the electronics and software company,

see Apple Inc.. For other uses, see Apple (disambiguation).

The apple is the pomaceous fruit of
the apple tree, species Malus
domestica in the rose family
Rosaceae. It is one of the most widely
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 ft) tall, with a broad,
often densely twiggy crown.['] The
leaves are alternately arranged simple

Apple

.5 %x

Y

)=1[0.3500 ...

Apple Inc.

From Wiki|

edia, the free encyclopedia
ed from Apple Computer

Apple Inc.,

Apple Inc.

)=1[08421 ...



W& Block Feature Vectors

= Sometimes, we think of the input as having features, which
are multiplied by outputs to form the candidates

X ... win the election ...
&
uf(X)n [1 O 1 O]
“win” — \“election”
&

... win the election ...

f(SPORTS)=[10100000000Q0]

f(POLITICS) =[000010100000

... win the election .

f(OTHER) =[000000001010




% Non-Block Feature Vectors

= Sometimes the features of candidates cannot be
decomposed in this regular way

S
= Example: a parse tree’s features may be the productiogs™ p
present in the tree

NP
NP VP —_

f( N/\N \l/ )_[ O]‘Ol]/_\le
\Y

S
CrRo=bhow T

N V N
VP
f— — 7

= Different candidates will thus often share features
= We'll return to the non-block case later



Linear Models



£ Linear Models: Scoring

*" |nalinear model, each feature gets a weight w

0O 0 0 0 O

... win the election ...

f(POLITICS)=[ 0 O O O 1 0 1

... win the election ...
f(SPORTS)=[ 1 0O 1 O O O O O O O 0 o0
w=[1l 1-1-2 1-1 1 -2 -2 -1 -1 1]

=  We score hypotheses by multiplying features and weights:
score(y,w) = w ' £(y)

... win the election ...
§(POLITICSY=[ 0 0 0 O 1 O 1 0 0 O 0 0

w=[1l 1-1-2 1-1 1-2-2-1-1 1]

SCOTG(P”é”Z;ﬁf%e]Cﬁg;S., w)=1x14+1x1=2



% Linear Models: Decision Rule

= The linear decision rule:

p/red?:Ct’I;O’n ( win the election -y W) —

scare('évﬁthéﬁc%g;w) = 1x1-

... win the election ...

arg maxw ' £(y)
yeY(x)

- (—-1)x1=0

score(POLITICS,w) =1 x 1 4
... win the election ...

score(OTHER,w) = (—=2) X

<=

L 1x1=2
14+ (-1)x1=-3

... win the election ...

p’]"@d’[;Ct’[;O’ﬁ, ( win the election ..., W) — POL[T[OS

= We've said nothing about where weights come from



p 3 Binary Classification

" Important special case: binary classification

= Classes are y=+1/-1 W
BIAS : =3
f(x,—-1) = —f(x,+1) cree i 7
money : 2
f(x) =2f(x,+1) >
o 2
= Decision boundary is £ +1 = SPAM
a hyperplane 1
w'f(x) =0 e
0 1 free



£ Multiclass Decision Rule

= |f more than two classes: w ! f(y1)

) . biggest
= Highest score wins

= Boundaries are more |
complex

= Harder to visualize w T f(y5) \ w ' f(y3)
biggest

biggest

prediction(x;, w) = argmaxw ' f;(y)
yeY



Learning



% Learning Classifier Weights

= Two broad approaches to learning weights

= Generative: work with a probabilistic model of the data,
weights are (log) local conditional probabilities

= Advantages: learning weights is easy, smoothing is well-understood,
backed by understanding of modeling

= Discriminative: set weights based on some error-related
criterion

= Advantages: error-driven, often weights which are good for
classification aren’t the ones which best describe the data

= We'll mainly talk about the latter for now



p 3 How to pick weights?

= Goal: choose “best” vector w given training data
= For now, we mean “best for classification”

= The ideal: the weights which have greatest test set
accuracy / F1 / whatever

= But, don’t have the test set
= Must compute weights from training set

= Maybe we want weights which give best training set
accuracy?

= Hard discontinuous optimization problem

= May not (does not) generalize to test set \
= Easy to overfit

Though, min-error
training for MT
does exactly this.




£ Minimize Training Error?

= Aloss function declares how costly each mistake is

ti(y) =y, y})

= E.g.0loss for correct label, 1 loss for wrong label

= Can weight mistakes differently (e.g. false positives worse than false
negatives or Hamming distance over structured labels)

= We could, in principle, minimize training loss:

min Z 0; (arg}rfnax WTfi(Y))

(2

= This is a hard, discontinuous optimization problem



% Linear Models: Perceptron

" The perceptron algorithm
= |teratively processes the training set, reacting to training errors

= Can be thought of as trying to drive down training error

= The (online) perceptron algorithm:
= Start with zero weights w

W
= Visit training instances one by one
= Try to classify f( *
A Yi)
y = arg maxw ' f(y) ‘ £(5)
yEYV(X) Y

= |f correct, no change!
= |f wrong: adjust weights

w — w+ f(y))

w—w — f(¥) t£(y")



W& Example: “Best” Web Page

" 2 0 0 ...

x; = “Apple Computers”

Apple =

From Wikipedia, the free encyclopedia
This article is about the fruit. For the electronics and software company,
see Apple Inc... For other uses, see Apple (disambiguation).

Theapple i the pomaceous o — —_— O 3 5 O O W
the apple tree, species Malus . o o

domestica in the rose family
Rosaceae. It is one of the most widely
cultivated tree fruits. The tree is small
and deciduous, reaching 3 to 12
metres (9.8 to 39 f) tall, with a broad
often densely twiggy crown [ The
leaves are alternately amranged simple

Apple Inc. =
From Wikipedia, the free encyclopedia

om Apple Computer

Apple Inc. Apple Inc.

f; y=1[08421 ... T

w—w+f(y;) —£(¥)
w = [1.5

)



p 3 Examples: Perceptron

= Separable Case

e 8 =« % o0 8 vl 2%

1 1 1 1 1 1 | I
- 0 ®» 1 2 2 ¥ 3I @ 4 & 5 B

37



Eﬁ Examples: Perceptron

= Non-Separable Case

1 1 1 1 1 1
0 0 1 1 2 2 3 3 4 4 ] 6] 6

38



Margin



p 3 Objective Functions

= What do we want from our weights?
= Depends!

= So far: minimize (training) errors:

7

Z step (wai(yf) — max WTfi(y)>

YFEY;

T 1 T
_ w £(y") — maxw f;(y)
" This is the “zero-one loss” Z yEy,

= Discontinuous, minimizing is NP-complete

= Maximum entropy and SVMs have other
objectives related to zero-one loss



p 3 Linear Separators

= Which of these linear separators is optimal?

41



W Classification Margin (Binary)

= Distance of x; to separator is its margin, m;
=  Examples closest to the hyperplane are support vectors

= Margin y of the separator is the minimum m




p 3 Classification Margin

= For each example x; and possible mistaken candidate y, we avoid
that mistake by a margin m(y) (with zero-one loss)

m;(y) = w' fi(y?) —w ' f;(y)

= Margin y of the entire separator is the minimum m

¥ = min (Wsz‘(Y%k) — max WTfi(Y))
¢ YFY;

" |tis also the largest y for which the following constraints hold

Vi,Vy  w!fi(y)) > w ' f(y) + 4 ()



p 3 Maximum Margin

= Separable SVMs: find the max-margin w

O ify=y?
max bi(y) = . :
wli=1 | ‘ {1 ify #y!

¥

Vi, Yy w! fi(y)) >w! fi(y) + 14 (y)

NN

= Can stick this into Matlab and (slowly) get an SVM
= Won’t work (well) if non-separable



p 3 Why Max Margin?

= Why do this? Various arguments:

= Solution depends only on the boundary cases, or support vectors (but
remember how this diagram is broken!)

= Solution robust to movement of support vectors

= Sparse solutions (features not in support vectors get zero weight)
= Generalization bound arguments

= Works well in practice for many problems

Support vectors




E& Max Margin / Small Norm

= Reformulation: find the smallest w which separates data

Remember this max

condition? . T § T
Vi, y w £;(y;) >w £;(y) +4(y)

= vyscaleslinearlyinw, soif | |w]| isn’t constrained, we can
take any separating w and scale up our margin

v = min [w' iy - w! E@)]/GG)
LYZY;

" |nstead of fixing the scale of w, we canfixy=1
1
min =||w||?
w2

Vi,y w' fi(y?) >w' f;(y) + 14(y)



Ef@ Gammatow

iwiz min |ful|?
| SO yull=1
vi,y w £(y;) >w f;(y) +£(y) Vi,y Usz‘(Y?) >ul f;(y) + 4(y)
o min [ful|?
. T * T
(vE) > . .
= 1/||ul] Vi,y u fi(y;) 2w £i(y) +4(y)
2 min l||u||2
||$ﬁ§11/IIU\I u
- : T (o * T
: f.(vH>u'f .
Vi,y qu' £i(y;) > yu' £(y) + 14 (y) Vi,y u £(y7) = u £i(y) + 4i(y)
I A
max 1/|[u||? min Sliwll

=1 vt
‘ * Vi,y w fi(y;) >w £i(y) + ()
i,y ulf(y)) > u' fi(y) + 4i(y) P ' i



W& Soft Margin Classification

=  What if the training set is not linearly separable?

" Slack variables §; can be added to allow misclassification of difficult or
noisy examples, resulting in a soft margin classifier




p 3 Maximum Margin

Note: exist other
choices of how to
penalize slacks!

Non-separable SVMs
= Add slack to the constraints
= Make objective pay (linearly) for slack:

w,§ 2
Vi,y, w! £(yD)+eE > w fi(y) + 4(y)

1
min J||w||*+C 3¢

= Cis called the capacity of the SVM — the smoothing
knob

Learning:
= Can still stick this into Matlab if you want
= Constrained optimization is hard; better methods!
= We'll come back to this later




Eﬁ Maximum Margin




Likelihood



g Linear Models: Maximum Entropy

= Maximum entropy (logistic regression)

= Use the scores as probabilities:

exp(w ' f(y)) « Make
>y exp(wE(y)) Ro¥itiufize

P(ylx,w) =

= Maximize the (log) conditional likelihood of training data

exp(w ' £;(yF)) )
>y exp(w ! f;(y))

L(w) = 10 [ P(yilx;,w) = Y log (

=Y <waz~(y;f) —log ) exp(wai(y)))
i Yy



p 3 Maximum Entropy |

= Motivation for maximum entropy:
= Connection to maximum entropy principle (sort of)

= Might want to do a good job of being uncertain on noisy
cases...

= .. in practice, though, posteriors are pretty peaked

» Regularization (smoothing)
max (WTfi(Yf) — log ZGXD(WTfi(Y))) —k||w||?
) y

min kl|w|[*=>" (Wsz’(Y%k) — log Zexp(wai(y))>
y

1



Eﬁ Maximum Entropy




Loss Comparison



Eﬁ Log-Loss

= |[f we view maxent as a minimization problem:

min k|lw|]24+>" - (WTfi(yE‘) —log " exp(wai(y)))
) y

= This minimizes the “log loss” on each example

| (((((((((((( TECPREDTH =

— (wai(yf) — log Zexp(wai(y))> = —log P(y;|x;, W)
y

step (wai(yff) — MaX WTfi(Y)>
YEY;

= One view: log loss is an upper bound on zero-one loss



p 3 Remember SVMs...

= \We had a constrained minimization
1o
rpnggllwll +C§ij£z
Vi,y, w f;(y5) +&>w! fi(y) + 4(y)
= _..but we can solve for ¢,

vi, & = max (Wsz'(Y) + fz'(}’)) —w ! f(y)
= Giving

min
W

W2+ 03 (max (w6 + 63) - w8 )

N| B~



g H | nge I—OSS Plot really only right

in binary case

= Consider the per-instance objective:

min klwlP+3 (m;x (w'f(y) + t:(v)) - WTfi(YE‘))

= This is called the “hinge loss” \

= Unlike maxent / log loss, you stop
gaining objective once the true label
wins by enough

= You can start from here and derive the
SVM objective

= Can solve directly with sub-gradient

decent (e.g. Pegasos: Shalev-Shwartz et

Tf(yi) - f;
al 07) wi(y}) — max (w' ()




E& Max vs “Soft-Max” Margin

= SVMs:

min KlIwlP=3 (W) — max (w () + ()
1 _ _
——
You can make this zero

= Maxent:

min k| lw|[2 =Y (WTfi(Yf) —log ) exp (WTfi(YD)
5 y

... but not this one

= Very similar! Both try to make the true score better
than a function of the other scores

= The SVM tries to beat the augmented runner-up
= The Maxent classifier tries to beat the “soft-max”



E& Loss Functions: Comparison

" Zero-One Loss

eeeeeeeeeeee
111111111111111111111111
xxxxxxxxxx

> step <wai(yff) — max Wsz‘(Y))

YFEY;

7

= Hinge

> (WTEGD — max (W) + ()

(

= |log

3 (wai(y;k) —log ) exp (Wsz‘(Y>>)
i Yy
w ! f;(y?) — ;’;fyé (WTfi(Y))



Separators: Comparison




Structure



E& Handwriting recognition

I Slid4 = brace

Sequential structure

[Slides: Taskar and Klein 05]



}fi CFG Parsing

X Y
S
/\
NP VP
B i " ™
DT NN VBD NP
The screen was ) B
The screen was NP PP
a sea of red N

DT NN IN NP

| | | |
a sea of NN

red

Recursive structure



% Bilingual Word Alignment

X vertu
de
les
What
- . . nouvelle
What is the an_t|C|pated is propositions
cost of collecting fees th: )
under the new proposal? anticipate i quel
) est
coIIectl: f le
En vertu de nouvelle feeg cout
propositions, quel est le under zge"“
cout préVL_l de perception the perception
de les droits? new de
proposal le
\drmts

Combinatorial structure



p 3 Structured Models

prediction(x,w) = arg max score(y, w)
yeYV(x)

U

space of feasible outputs

Assumption:

score(y,w) =w ' f(y) = ZWTf(Yp)
p

Score is a sum of local “part” scores

Parts = nodes, edges, productions



}f@ CFG Parsing

P(y [x)oc  ]] ¢(A—a)

A—ae(x,y)
. #(NP — DT NN)
/\
NP VP
DT/\NN VBD/\NP f:XXy—>§)%d

| | | — T~
the e wee v 7o R #(PP > IN NP)
PN PN

DT NN IN NP

| | | |
a sea of NN

]
red

#(NN — 'sea’)

[I exp{w'f(4— o)} =exp{w f(x,y)}
A—ae(x,y)



% Bilingual word alignment

N owlf(x) =w' f(x,y)

Yik€Y
En
vertu
de
What les
is nouvelle f X
the propositions ( J k)
anticipated , .
cost quel B assoclation
of est
collecting le m position
fees cout
under prévu n
der pr orthography
new perception
proposal de

? le

droits
?



E& Efficient Decoding

= Common case: you have a black box which computes

prediction(x) = arg maxw ' £(y)
yeY(x)

at least approximately, and you want to learn w

= Easiest option is the structured perceptron [Collins 01]

= Structure enters here in that the search for the best y is typically a
combinatorial algorithm (dynamic programming, matchings, ILPs, A*...)

= Prediction is structured, learning update is not



% Structured Margin (Primal)

Remember our primal margin objective?

min Lwl3+CY (mgx (T fi(y) + (y)) — Mﬁ-@f))

Still applies with structured output space!



% Structured Margin (Primal)

Just need efficient loss-augmented decode:

y = argmax, (w' f;(y) + 4;(y))

mln —HwHQ—I-CZ () + 4 (y) — waz(y;'k))

—w+cZ i) = fi(y}))

Still use general subgradient descent methods! (Adagrad)



& Structured Margin (Dual)

= Remember the constrained version of primal:
min l||w||2 +C> ¢
w,& 2 i '
Vi,y w' Hi(yD) > w fi(y) + 4(y) - &

* Dual has a variable for every constraint here



}f@ Full Margin: OCR

= \WWe want:

argmaxy w'f(HZ&8,y) = ‘brace”

= Equivalently:
w | f(HZHE , “brace”) > w ' f(HZME, “aaaaa”)

w | f (I , “brace”) > w ! f((I&IEE ,“aaaab”)
>a lot!

w | {(H&EE , “brace”) > w ! {(AZME , “zzzz7"



p 3 Parsing example

= \WWe want:

arg maxy WTf(‘Itwas red’ ,y) — A§g

cCD

= Equivalently:
WTf(‘It was red, A§§~ ) > WTf(‘It was red’, AfﬁF) )

Tf(Itwasred A ) > WTf(Itwasred, AﬁB)
>a lot!

WTf(‘Itwasred Aa) > WTf(Itwasred, GEiF)

J



p 3 Alignment example

= We want:
arg maxy w ! f( Whatisthe' v} — 0P
y ‘Quel est le’ ’ 3:3

= Equivalently:

WTf(‘Whatisthe 1“;) > WTf(‘Whatisthe leel A

2
‘Quel est le’ ’3...3 ‘Quel est le’’ X )

T £/ 'What is the’ 1%®1 T £ ("What is the’
w f(‘Quel est le’ ’3...§) > W f(‘Quel estle’’ gﬁg) >a IOtl

lee1l . ;, 1 1
WT (What is tr;e’ 2“2 ) > WTf(What is the ZXZ)
3

‘Quel est | ‘Quel estle’’ 3



}f@ Cutting Plane (Dual)

= A constraint induction method [Joachims et al 09]

= Exploits that the number of constraints you actually need per instance
is typically very small

= Requires (loss-augmented) primal-decode only

= Repeat:

= Find the most violated constraint for an instance:
vy w ! fi(y?) > w! fi(y) + 4(y)
arg max w ' f;(y) + £:(y)

= Add this constraint and resolve the (non-structured) QP (e.g. with
SMO or other QP solver)



}& Cutting Plane (Dual)

= Some issues:

= Can easily spend too much time solving QPs
= Doesn’t exploit shared constraint structure

» |n practice, works pretty well; fast like perceptron/MIRA,
more stable, no averaging

Summarization Phrase Extraction Parsing
08

o
2

[

o
2

= Adaptive CP
===== MIRA

Bigram Recall

s
=
A,

5 5 10 1
Iteration Iteration Iteration



g Likelihood, Structured

L(w) = —k|[w|[*+)_ (WTfi(nyk) —log " eXD(WTfi(Y)>>
7 y

W) — okw+ Y (fz(y:) -y P(yx»f?;(y))
() y

= Structure needed to compute:
= Log-normalizer

= Expected feature counts

= E.g.if afeatureis an indicator of DT-NN then we need to compute posterior
marginals P(DT-NN | sentence) for each position and sum

= Also works with latent variables (more later)



Comparison
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Llhood Stochastic Gradient Descent
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Option O: Reranking

[e.g.
Charniak and
Johnson 03]

Input

X =
“The screen was a sea of red.”

N-Best List
(e.g. n=100)

NP vp

DT NN VBD NP
| | | T
The screen was NP pp

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
DT NN VBD NP
o | —~
The screen was NP PP

Baseline DTSN I N Non-Structured
Parser T

Classification

NP vp

DT NN VBD NP
| | | T
The screen was NP pp

NN
DT NN IN NP

I I I
a sea of NN

red
NP vp
DT NN VBD NP
o | —~
The screen was NP PP

AN P
DT NN IN NP

I I
a sea of NN

red

Output

S
/\
NP VP
S T
DT NN VBD NP
| | | T
The screen was NP PP

PR PN
DT NN IN NP
| | | |
a sea of NN
|
red



}f@ Reranking

= Advantages:
= Directly reduce to non-structured case
= No locality restriction on features

S

/\
NP VP

T —
DT NN VBD NP
f ( I I I T~ ) p—
The screen was NP PP
PN PN

DT NN IN NP

| I | \
a sea of NN

\
red

"= Disadvantages:
= Stuck with errors of baseline parser

= Baseline system must produce n-best lists
= But, feedback is possible [McCloskey, Charniak, Johnson 2006]



E‘; M3Ns

= Another option: express all constraints in a packed form
= Maximum margin Markov networks [Taskar et al 03]
= |ntegrates solution structure deeply into the problem structure

= Steps
= Express inference over constraints as an LP
= Use duality to transform minimax formulation into min-min

= Constraints factor in the dual along the same structure as the primal;
alphas essentially act as a dual “distribution”

= Various optimization possibilities in the dual



p 3 Example: Kernels

= Quadratic kernels

K(z,2)) = (z-2' 4+ 1)?

™ /
=) wjriw; +2) mpr;+1
1,7 1

~
K(y,y) = (f(y) "f(y") + 1)?



£ Non-Linear Separators

= Another view: kernels map an original feature space to some
higher-dimensional feature space where the training set is
(more) separable
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p 3 Why Kernels?

*= Can’tyou just add these features on your own (e.g. add all
pairs of features instead of using the quadratic kernel)?
= Yes, in principle, just compute them
= No need to modify any algorithms
= But, number of features can get large (or infinite)

= Some kernels not as usefully thought of in their expanded
representation, e.g. RBF or data-defined kernels [Henderson and Titov
05]

= Kernels let us compute with these features implicitly

= Example: implicit dot product in quadratic kernel takes much less
space and time per dot product

= Of course, there’s the cost for using the pure dual algorithms...



