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Algorithms	for	NLP



Latent	Variable	Grammars

Parse Tree 
Sentence Parameters 

...

Derivations



Backward

Learning	Latent	Annotations

EM	algorithm:

X1

X2
X7X4

X5 X6X3

He was right

.

§ Brackets are known
§ Base categories are known
§ Only induce subcategories

Just	like	Forward-Backward	for	HMMs.
Forward
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Number	of	Phrasal	Subcategories



Number	of	Lexical	Subcategories
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Learned	Splits

§ Proper Nouns (NNP):

§ Personal pronouns (PRP):

NNP-14 Oct. Nov. Sept.
NNP-12 John Robert James
NNP-2 J. E. L.
NNP-1 Bush Noriega Peters

NNP-15 New San Wall
NNP-3 York Francisco Street

PRP-0 It He I
PRP-1 it he they
PRP-2 it them him



§ Relative	adverbs	(RBR):

§ Cardinal	Numbers	(CD):

RBR-0 further lower higher
RBR-1 more less More
RBR-2 earlier Earlier later

CD-7 one two Three
CD-4 1989 1990 1988
CD-11 million billion trillion
CD-0 1 50 100
CD-3 1 30 31
CD-9 78 58 34

Learned	Splits



Final	Results	(Accuracy)

≤ 40 words
F1

all 
F1

EN
G

Charniak&Johnson ‘05 (generative) 90.1 89.6

Split / Merge 90.6 90.1

G
ER

Dubey ‘05 76.3 -

Split / Merge 80.8 80.1

C
H

N

Chiang et al. ‘02 80.0 76.6

Split / Merge 86.3 83.4

Still higher numbers from reranking / self-training methods



Efficient	Parsing	for
Hierarchical	Grammars



Coarse-to-Fine	Inference
§ Example:	PP	attachment

?????????



Hierarchical	Pruning

… QP NP VP …coarse:

split in two: … QP1 QP2 NP1 NP2 VP1 VP2 …

… QP1 QP1 QP3 QP4 NP1 NP2 NP3 NP4 VP1 VP2 VP3 VP4 …split in four:

split in eight: … … … … … … … … … … … … … … … … …



Bracket	Posteriors



1621	min
111	min
35	min

15	min
(no	search	error)



Other	Syntactic	Models



Dependency	Parsing

§ Lexicalized	parsers	can	be	seen	as	producing	dependency	trees

§ Each	local	binary	tree	corresponds	to	an	attachment	in	the	dependency	
graph

questioned

lawyer witness

the the



Dependency	Parsing

§ Pure	dependency	parsing	is	only	cubic	[Eisner	99]

§ Some	work	on	non-projective dependencies
§ Common	in,	e.g.	Czech	parsing
§ Can	do	with	MST	algorithms	[McDonald	and	Pereira	05]

Y[h] Z[h’]

X[h]
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Shift-Reduce	Parsers

§ Another	way	to	derive	a	tree:

§ Parsing
§ No	useful	dynamic	programming	search
§ Can	still	use	beam	search	[Ratnaparkhi	97]



Parse	Reranking

§ Assume	the	number	of	parses	is	very	small
§ We	can	represent	each	parse	T	as	a	feature	vector	j(T)

§ Typically,	all	local	rules	are	features
§ Also	non-local	features,	like	how	right-branching	the	overall	tree	is
§ [Charniak and	Johnson	05]	gives	a	rich	set	of	features



Classification



Classification
§ Automatically	make	a	decision	about	inputs

§ Example:	document	® category
§ Example:	image	of	digit	® digit
§ Example:	image	of	object	® object	type
§ Example:	query	+	webpages	® best	match
§ Example:	symptoms	® diagnosis
§ …

§ Three	main	ideas
§ Representation	as	feature	vectors
§ Scoring	by	linear	functions	(or	not,	actually)
§ Learning	by	optimization



Some	Definitions

INPUTS

CANDIDATES

FEATURE 
VECTORS

close	the	____

CANDIDATE 
SET

y	occurs	in	x

“close”	in	x Ù y=“door”
x-1=“the”	Ù y=“door”

TRUE 
OUTPUTS

{door,	table,	…}

table

door

x-1=“the”	Ù y=“table”



Features



Feature	Vectors

§ Example:	web	page	ranking	(not	actually	classification)

xi = “Apple Computers”



Block	Feature	Vectors

§ Sometimes,	we	think	of	the	input	as	having	features,	which	
are	multiplied	by	outputs	to	form	the	candidates

… win the election …

“win” “election”

… win the election …

… win the election …

… win the election …



Non-Block	Feature	Vectors
§ Sometimes	the	features	of	candidates	cannot	be	

decomposed	in	this	regular	way
§ Example:	a	parse	tree’s	features	may	be	the	productions	

present	in	the	tree

§ Different	candidates	will	thus	often	share	features
§ We’ll	return	to	the	non-block	case	later
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Linear	Models



Linear	Models:	Scoring
§ In	a	linear	model,	each	feature	gets	a	weight	w

§ We	score	hypotheses	by	multiplying	features	and	weights:

… win the election …

… win the election …

… win the election …

… win the election …



Linear	Models:	Decision	Rule

§ The	linear	decision	rule:

§ We’ve	said	nothing	about	where	weights	come	from

… win the election …

… win the election …

… win the election …

… win the election …

… win the election …

… win the election …



Binary	Classification

§ Important	special	case:	binary	classification
§ Classes	are	y=+1/-1

§ Decision	boundary	is
a	hyperplane

BIAS  : -3
free  :  4
money :  2

0 1
0

1

2

free
m

on
ey

+1 = SPAM

-1 = HAM



Multiclass	Decision	Rule

§ If	more	than	two	classes:
§ Highest	score	wins
§ Boundaries	are	more	
complex

§ Harder	to	visualize



Learning



Learning	Classifier	Weights

§ Two	broad	approaches	to	learning	weights

§ Generative:	work	with	a	probabilistic	model	of	the	data,	
weights	are	(log)	local	conditional	probabilities
§ Advantages:	learning	weights	is	easy,	smoothing	is	well-understood,	

backed	by	understanding	of	modeling

§ Discriminative:	set	weights	based	on	some	error-related	
criterion
§ Advantages:	error-driven,	often	weights	which	are	good	for	

classification	aren’t	the	ones	which	best	describe	the	data

§ We’ll	mainly	talk	about	the	latter	for	now



How	to	pick	weights?

§ Goal:	choose	“best”	vector	w	given	training	data
§ For	now,	we	mean	“best	for	classification”

§ The	ideal:	the	weights	which	have	greatest	test	set	
accuracy	/	F1	/	whatever
§ But,	don’t	have	the	test	set
§ Must	compute	weights	from	training	set

§ Maybe	we	want	weights	which	give	best	training	set	
accuracy?
§ Hard	discontinuous	optimization	problem
§ May	not	(does	not)	generalize	to	test	set
§ Easy	to	overfit

Though, min-error 
training for MT 
does exactly this.



Minimize	Training	Error?
§ A	loss	function	declares	how	costly	each	mistake	is

§ E.g.	0	loss	for	correct	label,	1	loss	for	wrong	label
§ Can	weight	mistakes	differently	(e.g.	false	positives	worse	than	false	

negatives	or	Hamming	distance	over	structured	labels)

§ We	could,	in	principle,	minimize	training	loss:

§ This	is	a	hard,	discontinuous	optimization	problem



Linear	Models:	Perceptron

§ The	perceptron	algorithm
§ Iteratively	processes	the	training	set,	reacting	to	training	errors
§ Can	be	thought	of	as	trying	to	drive	down	training	error

§ The	(online)	perceptron	algorithm:
§ Start	with	zero	weights	w
§ Visit	training	instances	one	by	one

§ Try	to	classify

§ If	correct,	no	change!
§ If	wrong:	adjust	weights



Example:	“Best”	Web	Page

xi = “Apple Computers”



Examples:	Perceptron

§ Separable	Case

37



Examples:	Perceptron

§ Non-Separable	Case

38



Margin



Objective	Functions

§ What	do	we	want	from	our	weights?
§ Depends!
§ So	far:	minimize	(training)	errors:

§ This	is	the	“zero-one	loss”
§ Discontinuous,	minimizing	is	NP-complete

§ Maximum	entropy	and	SVMs	have	other	
objectives	related	to	zero-one	loss



Linear	Separators

§ Which	of	these	linear	separators	is	optimal?	

41



Classification	Margin	(Binary)

§ Distance	of	xi to	separator	is	its	margin,	mi
§ Examples	closest	to	the	hyperplane	are	support	vectors
§ Margin g of	the	separator	is	the	minimum	m

m

g



Classification	Margin

§ For	each	example	xi and	possible	mistaken	candidate	y,	we	avoid	
that	mistake	by	a	margin	mi(y) (with	zero-one	loss)

§ Margin	g of	the	entire	separator	is	the	minimum	m

§ It	is	also	the	largest	g for	which	the	following	constraints	hold



§ Separable	SVMs:	find	the	max-margin	w

§ Can	stick	this	into	Matlab and	(slowly)	get	an	SVM
§ Won’t	work	(well)	if	non-separable

Maximum	Margin



Why	Max	Margin?

§ Why	do	this?		Various	arguments:
§ Solution	depends	only	on	the	boundary	cases,	or	support	vectors (but	

remember	how	this	diagram	is	broken!)
§ Solution	robust	to	movement	of	support	vectors
§ Sparse	solutions	(features	not	in	support	vectors	get	zero	weight)
§ Generalization	bound	arguments
§ Works	well	in	practice	for	many	problems

Support vectors



Max	Margin	/	Small	Norm

§ Reformulation:	find	the	smallest	w	which	separates	data

§ g scales	linearly	in	w,	so	if	||w||	isn’t	constrained,	we	can	
take	any	separating	w	and	scale	up	our	margin

§ Instead	of	fixing	the	scale	of	w,	we	can	fix	g =	1

Remember this 
condition?



Gamma	to	w



Soft	Margin	Classification		
§ What	if	the	training	set	is	not	linearly	separable?
§ Slack	variables ξi can	be	added	to	allow	misclassification	of	difficult	or	

noisy	examples,	resulting	in	a	soft	margin classifier

ξi

ξi



Maximum	Margin

§ Non-separable	SVMs
§ Add	slack	to	the	constraints
§ Make	objective	pay	(linearly)	for	slack:

§ C	is	called	the	capacity of	the	SVM	– the	smoothing	
knob

§ Learning:
§ Can	still	stick	this	into	Matlab	if	you	want
§ Constrained	optimization	is	hard;	better	methods!
§ We’ll	come	back	to	this	later

Note: exist other 
choices of how to 
penalize slacks!



Maximum	Margin



Likelihood



Linear	Models:	Maximum	Entropy

§ Maximum	entropy	(logistic	regression)
§ Use	the	scores	as	probabilities:

§ Maximize	the	(log)	conditional	likelihood	of	training	data

Make 
positiveNormalize



Maximum	Entropy	II

§ Motivation	for	maximum	entropy:
§ Connection	to	maximum	entropy	principle	(sort	of)
§ Might	want	to	do	a	good	job	of	being	uncertain	on	noisy	
cases…

§ …	in	practice,	though,	posteriors	are	pretty	peaked

§ Regularization	(smoothing)



Maximum	Entropy



Loss	Comparison



Log-Loss
§ If	we	view	maxent	as	a	minimization	problem:

§ This	minimizes	the	“log	loss”	on	each	example

§ One	view:	log	loss	is	an	upper	bound on	zero-one	loss



Remember	SVMs…

§ We	had	a	constrained minimization

§ …but	we	can	solve	for	xi

§ Giving



Hinge	Loss

§ This	is	called	the	“hinge	loss”
§ Unlike	maxent /	log	loss,	you	stop	

gaining	objective	once	the	true	label	
wins	by	enough

§ You	can	start	from	here	and	derive	the	
SVM	objective

§ Can	solve	directly	with	sub-gradient	
decent	(e.g.	Pegasos:	Shalev-Shwartz et	
al	07)

§ Consider the per-instance objective:

Plot really only right 
in binary case



Max	vs	“Soft-Max”	Margin

§ SVMs:

§ Maxent:

§ Very	similar!		Both	try	to	make	the	true	score	better	
than	a	function	of	the	other	scores
§ The	SVM	tries	to	beat	the	augmented	runner-up
§ The	Maxent	classifier	tries	to	beat	the	“soft-max”

You can make this zero

… but not this one



Loss	Functions:	Comparison

§ Zero-One	Loss

§ Hinge

§ Log



Separators:	Comparison



Structure



Handwriting	recognition

brace

Sequential structure

x y

[Slides:	Taskar and	Klein	05]



CFG	Parsing

The screen was 
a sea of red

Recursive structure

x y



Bilingual	Word	Alignment

What is the anticipated 
cost of collecting fees 
under the new proposal?

En vertu de nouvelle 
propositions, quel est le 
côut prévu de perception 
de les droits?

x y
What

is 
the

anticipated
cost

of
collecting 

fees 
under 

the 
new 

proposal
?

En 
vertu 
de
les
nouvelle 
propositions
, 
quel 
est 
le 
côut 
prévu 
de 
perception 
de 
le 
droits
?

Combinatorial structure



Structured	Models

Assumption:

Score	is	a	sum	of	local	“part”	scores

Parts	=	nodes,	edges,	productions

space of feasible outputs



CFG	Parsing

#(NP ® DT NN)

…

#(PP ® IN NP)

…

#(NN ® ‘sea’)



Bilingual	word	alignment

§ association
§ position
§ orthography

What
is 

the
anticipated

cost
of

collecting 
fees 

under 
the 

new 
proposal

?

En 
vertu 
de
les
nouvelle 
propositions
, 
quel 
est 
le 
côut 
prévu 
de 
perception 
de 
le 
droits
?

j

k



Efficient	Decoding
§ Common	case:	you	have	a	black	box	which	computes

at	least	approximately,	and	you	want	to	learn	w

§ Easiest	option	is	the	structured	perceptron	[Collins	01]
§ Structure	enters	here	in	that	the	search	for	the	best	y	is	typically	a	

combinatorial	algorithm	(dynamic	programming,	matchings,	ILPs,	A*…)
§ Prediction	is	structured,	learning	update	is	not



Structured	Margin	(Primal)

Remember	our	primal	margin	objective?

min
w

1

2
kwk22 + C

X

i

✓
max

y

�
w>fi(y) + `i(y)

�
� w>fi(y

⇤
i )

◆

Still	applies	with	structured	output	space!



Structured	Margin	(Primal)

min
w

1

2
kwk22 + C

X

i

�
w>fi(ȳ) + `i(ȳ)� w>fi(y

⇤
i )
�

ȳ = argmaxy
�
w>fi(y) + `i(y)

�
Just	need	efficient	loss-augmented	decode:

rw = w + C
X

i

(fi(ȳ)� fi(y
⇤
i ))

Still	use	general	subgradient descent	methods!	(Adagrad)



Structured	Margin	(Dual)
§ Remember	the	constrained	version	of	primal:

§ Dual	has	a	variable	for	every	constraint	here



§ We	want:

§ Equivalently:

Full	Margin:	OCR

a lot!…

“brace”

“brace”

“aaaaa”

“brace” “aaaab”

“brace” “zzzzz”



§ We	want:

§ Equivalently:

‘It was red’

Parsing	example

a lot!

S
A B

C D

S
A B
D F

S
A B

C D

S
E F

G H

S
A B

C D

S
A B

C D

S
A B

C D

…

‘It was red’

‘It was red’

‘It was red’

‘It was red’

‘It was red’

‘It was red’



§ We	want:

§ Equivalently:

‘What is the’
‘Quel est le’

Alignment	example

a lot!…
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‘Quel est le’
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‘What is the’
‘Quel est le’

‘What is the’
‘Quel est le’

‘What is the’
‘Quel est le’



Cutting	Plane	(Dual)
§ A	constraint	induction	method	[Joachims	et	al	09]

§ Exploits	that	the	number	of	constraints	you	actually	need	per	instance	
is	typically	very	small

§ Requires	(loss-augmented)	primal-decode	only

§ Repeat:
§ Find	the	most	violated	constraint	for	an	instance:

§ Add	this	constraint	and	resolve	the	(non-structured)	QP	(e.g.	with	
SMO	or	other	QP	solver)



Cutting	Plane	(Dual)
§ Some	issues:

§ Can	easily	spend	too	much	time	solving	QPs
§ Doesn’t	exploit	shared	constraint	structure
§ In	practice,	works	pretty	well;	fast	like	perceptron/MIRA,	
more	stable,	no	averaging



Likelihood,	Structured

§ Structure	needed	to	compute:
§ Log-normalizer
§ Expected	feature	counts

§ E.g.	if	a	feature	is	an	indicator	of	DT-NN	then	we	need	to	compute	posterior	
marginals	P(DT-NN|sentence)	for	each	position	and	sum	

§ Also	works	with	latent	variables	(more	later)



Comparison



Option	0:	Reranking

x = 
“The screen was a sea of red.”

…
Baseline 
Parser

Input N-Best List
(e.g. n=100)

Non-Structured 
Classification

Output

[e.g. 
Charniak and 
Johnson 05]



Reranking
§ Advantages:

§ Directly	reduce	to	non-structured	case
§ No	locality	restriction	on	features

§ Disadvantages:
§ Stuck	with	errors	of	baseline	parser
§ Baseline	system	must	produce	n-best	lists
§ But,	feedback	is	possible	[McCloskey,	Charniak,	Johnson	2006]



M3Ns
§ Another	option:	express	all	constraints	in	a	packed	form

§ Maximum	margin	Markov	networks	[Taskar et	al	03]
§ Integrates	solution	structure	deeply	into	the	problem	structure

§ Steps
§ Express	inference	over	constraints	as	an	LP
§ Use	duality	to	transform	minimax formulation	into	min-min
§ Constraints	factor	in	the	dual	along	the	same	structure	as	the	primal;	

alphas	essentially	act	as	a	dual	“distribution”
§ Various	optimization	possibilities	in	the	dual



Example:	Kernels

§ Quadratic	kernels



Non-Linear	Separators
§ Another	view:	kernels	map	an	original	feature	space	to	some	

higher-dimensional	feature	space	where	the	training	set	is	
(more)	separable

Φ:  y → φ(y)



Why	Kernels?
§ Can’t	you	just	add	these	features	on	your	own	(e.g.	add	all	

pairs	of	features	instead	of	using	the	quadratic	kernel)?
§ Yes,	in	principle,	just	compute	them
§ No	need	to	modify	any	algorithms
§ But,	number	of	features	can	get	large	(or	infinite)
§ Some	kernels	not	as	usefully	thought	of	in	their	expanded	

representation,	e.g.	RBF	or	data-defined	kernels	[Henderson	and	Titov	
05]

§ Kernels	let	us	compute	with	these	features	implicitly
§ Example:	implicit	dot	product	in	quadratic	kernel	takes	much	less	

space	and	time	per	dot	product
§ Of	course,	there’s	the	cost	for	using	the	pure	dual	algorithms…


